
29

ISSN 1023-862XJ. Engg. and Appl. Sci. Vol. 34 No. 2 July - December 2015

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE
ALIGNMENT

Asif Ali Khan*, Laiq Hassan*, Salim Ullah*

ABSTRACT:
In	 bioinformatics,	 sequence	 alignment	 is	 a	 common	 and	 insistent	 task.	 Biologists	 align	 genome	 sequences	 to	 find	
important similarities and dissimilarities in them. Multiple heuristics and dynamic programming based approaches
are	 available	 for	 sequence	 alignment.	 Smith-Waterman	 (SW),	 an	 exact	 algorithm	 for	 local	 alignment,	 is	 the	 most	
accurate	 of	 them	all.	However,	 the	 space	 and	 time	 complexity	 of	 the	 SW	algorithm	 is	 quadratic.	 It	 is	 imperative	 to	
use	parallelism	and	distributed	computing	techniques	in	order	to	speed	up	this	process.	In	this	paper,	we	discuss	and	
evaluate	 an	OpenMP	based	 implementation	 of	 SW	algorithm.	All	 the	 experiments	 have	 been	 performed	 on	 a	 Linux	
based	multi-core	machine	thereby	reducing	the	overall	complexity	of	 the	SW	algorithm	from	quadratic	 to	 linear.	The	
results	 obtained	with	 various	 input	 sequences	 demonstrate	 that	 the	 parallel	 version	 of	 the	 SW	 algorithm	 runs	 2.63	
times	 faster	 than	 its	 sequential	 counterpart.

KEYWORDS:	Smith-waterman,	Sequence	Alignment,	OpenMp,	DNA,	Application	Program	Interface	(API),	Dynamic	
Programming,	FASTA,	BLAST	

*	Department	Computer	 Systems	Engineering,	University	 of	Engineering	and	Technology,	Peshawar,	Pakistan.

INTRODUCTION

Sequence alignment has been a longstanding research
topic in the area of molecular biology. For making
inferences about newly discovered genes, biologists
compare their DNA sequences with the existing ones i.e.
genes of some known functionality to find structural and
functional similarities between them. Bioinformaticians
use sequence alignment to find evolutionary trend in
different species, study diseases and their inheritance in
a more efficient and improved manner. These and many
more applications make sequence alignment an active
bioinformatics research area.

Biological sequence alignment is the process of
comparing DNA, RNA or protein sequences to find
similarities between them. This simple comparison has
become a challenge because of the volume of available
genetic data which is getting doubled every six months1,
much higher than advancement in computing power.

Many Dynamic Programming (DP) based algorithms
were proposed for computing optimal genome sequences
alignment. Among them, Smith-Waterman (SW) algo-
rithm2, proposed by Smith and Waterman, is the most
accurate one. However, the time and space complexity of
the SW algorithm is quadratic with respect to the length
of the sequences to be compared and hence results in a
large computational time. Heuristics based approaches

e.g. BLAST3,4 were proposed to minimize the compu-
tational time at the cost of reduction in accuracy i.e.
the lesser time efficient heuristics give more accurate
results and vice versa.

Parallel and distributed computing based techniques
were applied to accelerate computationally expensive
sequence alignment algorithms. Many proposed systems
execute SW on clusters5-7 and grids8. Parallel program-
ming paradigms like Open Mp and MPI have been used
to parallelize the global alignment algorithm namely
Needleman-Wunsch (N-W) in the recent past9,12. These
solutions significantly reduced the overall processing
time.

In this paper, we present the parallel implementation of
a local sequence alignment algorithm Smith Waterman on
a multi-core machine and analyze its performance gain.

Sequence alignment

Sequence alignment is of utmost importance to the biol-
ogists. By aligning the sequences of the entire genome,
biologists find important matches and mismatches in
them. From biological perspective, a match means similar
structure, conserved regulatory regions, while mismatch
means functional differences and diverged regions etc.

Different methods have been proposed by researchers

30

ISSN 1023-862XJ. Engg. and Appl. Sci. Vol. 34 No. 2 July - December 2015

for the optimal alignment of genome sequences. These
methods are broadly classified into two categories
i.e. global and local. Global methods attempt to find
maximum possible match from end to end while local
methods find small similar stretches in sequences11. The
fundamental and well known algorithms for sequence
alignment are; Needleman-Wunsch for global alignment
and Smith-Waterman for local alignment with the latter
being used most commonly in computational bioinfor-
matics. Both these algorithms are based on well-known
technique called dynamic programming. DP based
algorithms give accurate comparison results but are
computationally expensive.

Heuristic based approaches like FASTA and BLAST
operate in linear time. BLAST is amongst the most
commonly used bioinformatics tools because of its
computational power. BLAST is around 50 times faster
than dynamic programing based algorithms which is
remarkable. However, its accuracy is not up to the mark.
FASTA is a software package, developed by David J.
Lipman and William R. Pearson for aligning DNA and
Protein sequences.

Smith Waterman algorithm align DNA sequences
using similarity matrix. Calculation of each element in
the matrix as shown in Figure 1 is dependent on its 3
neighbors’ values: left (west) element, upper (North)
element, and diagonal (North-West) element. These
intrinsic dependencies limit the processing power of
the SW algorithm.

DNA sequences are represented as strings composed
of elements of the alphabet S = [A, C, G, T]. In order to
find similarity or matching pattern in DNA sequences, we
have to identify the optimal alignment in them because
they are rarely identical. Sequence alignment means
finding one to one correspondence between characters of
the two sequences. Gaps can also be inserted at different
locations such that the sequences end up with the best
possible match.

smith-waterman algorithm

SW is the core of dynamic programming algorithms.
SW being an exact method gives optimal result at the
cost of increased computational complexity. To align
two sequences of size ‘n’ and ‘m’, this complexity

becomes O(mn).

SW algorithm finds similar regions/stretches in the
input sequences, namely subject and query sequence,
by finding the distance characterized by minimal cost of
transformation and performing two elementary operations;
insertion/deletion (gap operation) and substitution.

Considering the two sequences to be compared are
‘sub’ and ‘qry’ with size ‘m’ and ‘n’. SW finds the
similar subsequences by computing a matrix ‘H’ using
Equation 1. The scoring scheme associated with the SW
algorithm is as follows.

Scoring scheme =

‘S’ is the score associated if the two characters are
similar (match); ‘D’ is penalty, if the two characters
are different (mismatch); ‘g’ is gap penalty, if any gap
is inserted.

H(i, j) = max (1)

Implementation of SW algorithm is a 3 step process
given below:

Initialization

The first step in implementing SW algorithm is the
initialization of the first row and first column of a matrix
to 0. The pseudo code for initialization is as follow:

Figure 1. Data dependencies in Smith-Waterman
Algorithm

31

ISSN 1023-862XJ. Engg. and Appl. Sci. Vol. 34 No. 2 July - December 2015

H(0,j) = 0

H(i,0) = 0

Matrix Fill-up

In matrix fill-up stage, the entire matrix is filled up
using Equation 1. The pseudo code for computing the
matrix is as follows:

for i = 1 to m

for j = 1 to n

H(i,j)	=	max	as	 a	 per	Equation	1

Trace back

This step is performed to obtain the local alignment
result. Since SW is a local alignment algorithm, its
traceback starts from the cell with maximum value and
following the arrow as shown in Figure 2 till a minimum
threshold is reached which in most of the cases is zero.
The arrow direction shows the origin of the value.
A diagonal arrow means that in both sequences the
character at that location is similar (match). An arrow
in vertical direction means a gap should be inserted in
the horizontal sequence and a horizontal arrow means,
insertion of a gap in vertical sequence.

in the matrix and reaches the first cell i.e. end to end. A
sample alignment example is shown in Figure 3, where
the scoring scheme used is: S = +1, D = -1 and g = 2.

Sub: A G C G T

Qry: A G -- G T

Sore: +1 +1 -2 +1 +1

Figure 2. Similarity matrix for two sequences ‘sub’
and ‘qry’

Since SW is a local alignment algorithm, it starts
from the maximum score in the matrix (corresponding
character T) and gives aligned subsequence. In global
alignment algorithms, this process starts from the last cell

Figure 3. Sequence alignment example

PROPOSED APPROACH

In SW algorithm, the matrix fill-up stage is the most
crucial one from computational perspective. All compu-
tations and comparisons for finding the maximum value
are carried out in this stage. This step can be expedited if
we parallelize the process of computing the cell values.
This seems complex at first due to the intrinsic data
dependencies. Computation of each cell value depends on
the values of 3 neighboring cells as discussed previously
i.e. is dependent on the values of cells , and which in
turn are dependent on their neighbors and so on.

By properly observing this overall process, it is
clear that elements in anti-diagonals of the similarity
matrix can be calculated simultaneously because they
are independent of each other and their predecessors’
values have already been calculated as shown in Figure
4. This parallel computation of anti-diagonal elements
significantly reduces the time complexity of an matrix
from to , i.e. from quadratic to linear.

Exploiting this nature of the SW algorithm, we have
developed a parallel version of the algorithm in Open
Multi-Processing (OpenMP)12, an Application Program
Interface (API) that supports multi-platform shared
memory multi-processing in C, C++ and FORTRAN.
In OpenMP, workload is distributed between threads
in such a way that they can communicate by sharing
variables and can be scheduled differently.

In general, for two sequences of size M and N, the
total number of anti-diagonals are and the number of
elements in the longest diagonal is.

The pseudo code for parallelizing the SW algorithm

32

ISSN 1023-862XJ. Engg. and Appl. Sci. Vol. 34 No. 2 July - December 2015

A. Sequential Implementation

The experimental results of sequential SW algorithm
with input sequences of various lengths and average
execution time are summarized in Table I. The first
column in Table I shows the query length whereas the
second column gives the average execution time in milli
seconds (ms). We have used the term Average Execution
Time as the experiment was repeated 20 times for each

Figure 4. Independent streams in similarity matrix

Figure 5. Pseudo code for parallelizing (for) loop in SW

using OpenMP programming paradigm is shown in
Figure 5.

For x = 1 to M + N - 1

{ # Prgma omp parallel for

For temp = 1 to length of diagonal

Computer the element}

Table 1. Sequential Execution Time

Query Length Average Execution Time
(ms)

100 170
200 340
300 500
400 660
0.3 37.88
0.25 65.62
0.2 99.05

query sequence and the average time is reported in the
Table 1. The results show that the execution time is
directly proportional to the number of sequences and
query length.

B. OpenMP Based Parallel implementation

As discussed previously, the performance of the
sequential code is directly dependent on the query size.
For parallel implementation, the number of threads
created are equally important. The parallel code if
executed with a single thread is equivalent to its serial
counterpart. The effect of varying number of threads while

Figure 6. Number of threads vs speedup

The outer ‘for loop’ cannot be parallelized because
the anti-diagonals are dependent on each other and it
will iterate M + N-1 times. The inner loop compute
the elements of each anti diagonal which are mutually
independent and hence can be computed in parallel. The
OpenMP ‘for construct’ has been used to parallelize
this loop.

EXPERIMENTAL RESULTS

The experimental results described in this section
were obtained by running the SW algorithm on a Linux
based machine having four Intel cores of 2.6 GHz clock
frequency each. The following subsections present the
results for both sequential and parallel implementations
on the same platform.

33

ISSN 1023-862XJ. Engg. and Appl. Sci. Vol. 34 No. 2 July - December 2015

keeping the query length unchanged on performance gain
is reported in Figure 6. The maximum performance as
shown in the figure is achieved by setting the number
of threads to 4.

Table 2 presents the average execution time of the
parallel implementation of SW algorithm for sequences
of various length. All the experiments have been repeated
20 times and the average execution time is presented.
The number of threads in all the experiments is 4 as
it gives optimal results as demonstrated in Firgure 6.

C. Sequential VS Parallel Implementation

Figure 7 presents the performance comparison of
sequential and parallel implementations. The OpenMP
based parallel implementation as shown in Figure 6 gives
the best performance when the number of threads is 4.
The results demonstrate that on the average the OpenMP
based parallel implementation performs 2.63 times better
than its sequential counterpart.

CONCLUSION AND FUTURE WORK

We have presented a scalable and parallel implemen-
tation of SW algorithm using OpenMP programming
paradigm. The results show notable improvement i.e.

2.63 times faster than its serial counterpart which is
significant. The technique presented here can easily be
ported to any available multi-core machine.

As a future work, the authors plan to run the same
code on a High Performance Computing (HPC) cluster
having 160 cores and 640 GB of main memory established
in Ghulam Ishaq Khan Institute (GIKI) of Engineering
Sciences in Khyber Pakhtunkhwa, Pakistan.

REFERENCES

1. Ramdas	T	and	Egan.	G,	2005.	A	survey	of	FPGAs	
for acceleration of high performance computing
and their application to computational molecular
biology,”	 in	 Proc.	 10th	 Intl.	 Conf.	 TENCON	 ‘05,	
Melbourne Australia, November, pp. 1-6.

2. Smith	 T.F,	 Waterman.	 M.	 S,	 1981.	 Identification	
of	 common	 molecular	 subsequences”,	 Journal	 of	
Molecular	Biology,	 vol.	 147:	 pp.	 195–197.

3. Altschul S.F. , Gish W, Miller W, E. Myers W, Lipman
D.J, 1990. Basic local alignment search tool,”
Journal	of	Molecular	Biology,	vol.	215:	pp.	403-410.

4. Chao	 K.M,	 Zhang	 J,	 Ostell	 J,	 Miller	 W,	 1994.	 A	
local	 alignment	 tool	 for	 long	 DNA	 sequences”,	
Computer Applications in the Biosciences, vol.
11(2):	 pp.	 147-153.

5. Chen C. and Schmidt B. 2003. Computing large-scale
alignments	 on	 a	multi-cluster”,	 in	Proc.	 IEEE	 Int.	
Conference on Cluster Computing, pages 38–45.

6. Rajko S. and Aluru S, 2004. Space and time optimal
parallel	 sequence	 alignments”,	 IEEE	 Transactions	
on	 Parallel	 and	 Distributed	 Systems,	 vol.	 15(12):	
pp. 1070–1081.

7. Almeida	T.	J.	and	Roma	N.	F.	V.	2010.	A	Parallel	pro-
gramming	framework	for	multi-core	DNA	sequence	
alignment”,	proc.	Intl.	Conf.	on	Complex,	Intelligent	
and	Software	 Intensive	Systems.	 pp.907-912.

8. Sousa M. S, Melo A. C. M. A, and Boukerche A,
2010. An adaptive multi-policy grid service for bio-
logical	 sequence	 comparison”,	 Journal	 of	Parallel	

Table 2. Openmp Execution Time (4 Threads)

Query Length Execution Time (ms)
100 64
200 129
300 190
400 250

Figure 7. Sequential vs. Parallel SW Execution
Time

34

ISSN 1023-862XJ. Engg. and Appl. Sci. Vol. 34 No. 2 July - December 2015

in	 Proc.	 International	 Conference	 on	 Scientific	 &	
Engineering	Computation[IC-SEC],	 pp.	 762-765.

11. L. Hasan, 2011. Acceleration of Bioinformatics
Sequence	Alignment,	A	Hardware	perspective,	Delft,	
The Netherlands.

12. OpenMP	Standards:	http://www.openmp.org/.	 (Last	
Accessed:	 January	22,	 2014).

and	Distributed	Computing,	vol.	70(2):	pp.	160–172.

9. Sathe	S.	R.	and	Shrimankar	D.D,	2010.	Parallelization	
of	 DNA	 Sequence	 Alignment	 using	 OpenMP”,	
ICCCS,	 pp.	 200-203.	

10. Wang	 L.	 Z,	 Xue	 W,	 Jie	 W,	 2002.	 Running	 MPI	
Application in the Hierarchical Grid Environment”,

